
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 4: HTML, Utf8, HTTP and redirects

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

2

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

3

details
1. Need to finalize the groups right away.

2. Hope to get the HW3 AG up tonight (or I may have
to move the due date.)

3. Should we do tee shirts?

4

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

5

The basic parts to a Search Engine

1. HTML parser.

2. Crawler.

3. Index.

4. Constraint solver.

5. Query language.

6. Ranker.

7. Front end.

6

Task: Extract the
content from a HTML
file as:

1. A series of tokens
in the contents and

2. A set of links with
anchor text to
other documents.

The basic parts to a Search Engine

1. HTML parser.

2. Crawler.

3. Index.

4. Constraint solver.

5. Query language.

6. Ranker.

7. Front end.

7

Depends on
understanding how
a browser talks to a
webpage.

The basic parts to a Search Engine

1. HTML parser.

2. Crawler.

3. Index.

4. Constraint solver.

5. Query language.

6. Ranker.

7. Front end.

8

Topics:

1. HTML as a markup
language for the
contents of a
webpage.

2. Basic HTTP
handshake and
redirects.

Recurring problem

Need to serialize and deserialize data.

1. Lossy or lossless.

2. Human-readable or binary.

3. Stateless or stateful.

Examples: Archive (tar, zip) and compressed (.jpg) file
formats and the exchange of information between a
browser and a webserver.

9

Recurring problem

Need to serialize and deserialize data.

1. Lossy or lossless.

2. Human-readable or binary.

3. Stateless or stateful and where any state is stored.

Examples: Archive (tar, zip) and compressed (.jpg) file
formats and the exchange of information between a
browser and a webserver.

10

The webpage problem

Serialize the text on the page
along with formatting
information, include images and
hyperlinks to other pages.

Human-readable because it was
written by hand.

11

Tim Berners-Lee

Image source: https://en.wikipedia.org/wiki/File:Tim_Berners-Lee_April_2009.jpg

https://en.wikipedia.org/wiki/File:Tim_Berners-Lee_April_2009.jpg

The World Wide Web is born

1980 Tim Berners-Lee, a
contractor at CERN, creates
a prototype system to share
documents.

1989 He invents HTML and wrote
a browser and a server.

1991 First publicly available
HTML specification.
Defines only 18 elements.
(There are now 139.)

12

Tim Berners-Lee

Image source: https://en.wikipedia.org/wiki/File:Tim_Berners-Lee_April_2009.jpg

https://en.wikipedia.org/wiki/File:Tim_Berners-Lee_April_2009.jpg

XML

The web is linked through text files with hyperlinks.

The basic idea is similar to XML (Extensible Markup Language),
intended as a way to allow human-readable text serialization of
complex objects.

<myThing myProperties="...">
anything I want

</myThing>

13

XML

The web is linked through text files with hyperlinks.

The basic idea is similar to XML (Extensible Markup Language),
intended as a way to allow human-readable text serialization of
complex objects.

<myThing myProperties="...">
anything I want

</myThing>
It's recursive. This can be
another XML structure.

14

XML

If the object doesn’t enclose anything, it can be written in a
short form.

<myLeafThing myProperties="..."/>

15

HTML

Hypertext Markup Language.

Loosely follows XML conventions.

Grown somewhat organically as the web grew
in the 90s and browsers began offering their
own features.

There are standards but not everyone cares.

Closing tags and both opening and closing
quotes are notoriously absent a lot of the
time.

16

HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Page title shown in the browser tab</title>
<script>Lots of gibberish</script>

<link href="MyStyles.css" rel="stylesheet" type="text/css" />
<link href="https://mydomain/favicon.ico" rel="shortcut icon" />

<meta name="DC.Rights" content="Copyright 2018 my name"/>
<meta name="description" content=“Short abstract."/>
<meta name="keywords" content=“arbitrary list of words"/>

</head>

<body>
:
</body>
</html>

17

The interesting content will be in the title,
possibly the description and keywords, and
the body.

HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Page title shown in the browser tab</title>
<script>Lots of gibberish</script>

<link href="MyStyles.css" rel="stylesheet" type="text/css" />
<link href="https://mydomain/favicon.ico" rel="shortcut icon" />

<meta name="DC.Rights" content="Copyright 2018 my name"/>
<meta name="description" content=“Short abstract."/>
<meta name="keywords" content=“arbitrary list of words"/>

</head>

<body>
:
</body>
</html>

18

The stylesheet contains CSS formatting
information which we don’t really care about.
The shortcut icon is to the little icon that
appears on the browser tab.

CSS
html,body {

height: 100%;
background-color: #f2f2f7;
color: black;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 0.9em;

}

p {
line-height: 17px;
margin-top:14px;
margin-bottom:17px;

}

h1,h2,h3,h4,h5,h6 {
color: #3d6c87;

}

a {
color: #5f8ea9;
text-decoration: none;

}

a:hover {
color: #33627d;

}

19

The CSS describes fonts, colors, etc., to be
used when drawing various HTML elements
but it doesn’t change the words on the page,
only how they appear.

HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Page title shown in the browser tab</title>
<script>Lots of gibberish</script>

<link href="MyStyles.css" rel="stylesheet" type="text/css" />
<link href="https://mydomain/favicon.ico" rel="shortcut icon" />

<meta name="DC.Rights" content="Copyright 2018 my name"/>
<meta name="description" content=“Short abstract."/>
<meta name="keywords" content=“arbitrary list of words"/>

</head>

<body>
:
</body>
</html>

20

JavaScript may be used to generate the content and on
some pages, scripts generate ALL the content. Not clear
how many engines index content generated from
scripts.

HTML

<body>
<div id="masthead" style="padding-top: 20px; padding-left:74px">
:
</div>

<div id="content">
:
</div>

<div id="sidebar">
:
</div>

</body>

21

The <body> contains the actual
content of the page.

<div> … </div> sections can be
used to create separate panels
on the page, applying different
CSS styles.

HTML

<div id="content">

<p>
Plain text

Link to The New York Times
</p>

</div>

22

Hyperlinks are marked with <a> tags. The text between
the opening <a> and closing tags are the anchor
text and are very relevant for ranking.

HTML

<div id="content">

<h1 style="...">This is a big heading</h1>

<p>
:
</p>

<h3 style="...">This is a smaller heading</h3>

<p>
:
</p>

<p>
:
</p>

</div>

23

Images are added with
tags.

Heading use <h1>, <h2>, etc.,
tags.

Paragraphs are marked with
<p> tags. The closing </p> are
often missing.

HTML

<div id="content">

<p>
if (b<a) ...
</p>

</div>

24

Special characters are written using &-escapes.

<div id="content">

<p>
if (b<a) ...
</p>

</div>

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

25

Image source: https://en.wikipedia.org/wiki/UTF-8
26

https://en.wikipedia.org/wiki/UTF-8

Codesets
Characters will be encoded as:

ASCII 7 bits per character.

ANSI 8 bits per character, nationalized with
codepages for character values > 0x7f.

Unicode 16 bits per character .

UTF-8 1 to 6 bytes used to encode characters
of 7 to 31 bits.

There will sometimes be a BOM (byte order mark) at the
beginning.

27

28

Seven bit ASCII

Source: http://cs.smu.ca/~porter/csc/ref/ascii.html

http://cs.smu.ca/%7Eporter/csc/ref/ascii.html

29

30
Source: https://www.gammon.com.au/unicode/

https://www.gammon.com.au/unicode/

Unicode

Universal Coded Character Set.

16-bit characters = 65,536 code points.

With multiple symbol sets, currently 137,220 characters defined.

Covers 139 modern and historic scripts + multiple symbol sets.

ISO/IEC 10646 standard maintained by the Unicode Consortium.

31

History of Unicode

Version 1.0.0 October 1991.

Used internally in Windows NT.

Did not see wider adoption.

Incompatible with ASCII.

Seen as wasteful if most of the text was ASCII.

32

UTF-8

Invented by Ken
Thompson and
Rob Pike, allegedly
on a napkin over a
meal.

Image sources: https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Rob_Pike

33

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Rob_Pike

UTF-8
1. Backward compatible with 7-bit ASCII.

2. Characters > 0x7F require more bytes.

3. The larger the character value, the more bytes.

4. Each additional bytes gives you an additional 6 bits
but you lose one from the first byte.

5. Last byte marked by a high-order zero.

6. Some sequences are invalid.

7. Capable of encoding 31 bits (Utf-32) but only Unicode
in common use.

34

UTF-8 sequences

Valid UTF-8 sequences

U-00000000 - U-0000007F: 0xxxxxxx 7 bits
U-00000080 - U-000007FF: 110xxxxx 10xxxxxx 11 bits
U-00000800 - U-0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx 16 bits
U-00010000 - U-001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 bits
U-00200000 - U-03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 26 bits
U-04000000 - U-7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 31 bits

Invalid, Overlong UTF-8 Sequences which should never be accepted because of the
security risk and are replaced with 0xfffd:

11 bits to encode 7 1100000x 10xxxxxx
16 bits to encode 11 11100000 100xxxxx 10xxxxxx
21 bits to encode 16 11110000 1000xxxx 10xxxxxx 10xxxxxx
26 bits to encode 21 11111000 10000xxx 10xxxxxx 10xxxxxx 10xxxxxx
31 bits to encode 26 11111100 100000xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

35

Utf8 FAQ

UTF-8 and Unicode FAQ
http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8

36

http://www.cl.cam.ac.uk/%7Emgk25/unicode.html#utf-8

Utf8 test case

UTF-8 decoder capability and stress test
http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt

37

http://www.cl.cam.ac.uk/%7Emgk25/ucs/examples/UTF-8-test.txt

Not a homework
#include <cstddef>
#include <cstdint>
typedef uint32_t Utf32;
typedef uint16_t Unicode;
typedef uint8_t Utf8;

// SizeOfUtf8 tells the number of bytes it will take to encode the
// specified Unicode value.

int SizeOfUtf8(Unicode c);

// Get the UTF-8 character as a Unicode value.
// If it's an invalid UTF-8 encoding for a U-16
// character, return the special malformed
// character code.

Unicode GetUtf8(Utf8 *p);

// NextUtf8 will scan forward to the next byte
// which could be the start of a UTF-8 character.
// If it's on a null character, it scans over it.

Utf8 *NextUtf8(Utf8 *p);

38

// Scan backward for the first PREVIOUS byte which could
// be the start of a UTF-8 character.

Utf8 *PreviousUtf8(Utf8 *p);

// Write a Unicode character in UTF-8.

Utf8 *WriteUtf8(Utf8 *p, Unicode c);

// UTF-8 String compares.
// Same return values as strcmp().

int StringCompare(Utf8 *a, Utf8 *b);

// Unicode string compare up to 'N' UTF-8 characters (not bytes)
// from two UTF-8 strings.

int StringCompare(Utf8 *a, Utf8 *b, size_t N);

39

Byte Order Marks
A BOM may tell you how a document is encoded in the first
2 or 3 bytes bytes.

ff fe Unicode
ef bb bf Utf-8
fe ff Big-endian Unicode

If there’s no BOM, it’s generally ASCII (or ANSI).
Conforming applications like Windows Notepad do this.

40

41

256 C% ls hello*.txt
hello.txt helloUnicode.txt helloUtf8.txt
helloAnsi.txt helloUnicodeBigEndian.txt
257 C% xd hello.txt
00000000: 6865 6c6c 6f0d 0a *hello..*
258 C% xd helloAnsi.txt
00000000: 6865 6c6c 6f0d 0a *hello..*
259 C% cmp hello.txt helloAnsi.txt
260 C% xd helloUtf8.txt
00000000: efbb bf68 656c 6c6f 0d0a *...hello ..*
261 C% xd helloUnicode.txt
00000000: fffe 6800 6500 6c00 6c00 6f00 0d00 0a00 *..h.e.l. l.o.....*
262 C% xd helloUnicodeBigEndian.txt
00000000: feff 0068 0065 006c 006c 006f 000d 000a *...h.e.l .l.o....*
263 C%

42

If there was no BOM, how would you decide what it
was?

If you guessed wrong, how would you know?

How would you detect binary files?

43

HTML Parser

Extract the content from a HTML file as a series of
tokens in the title and the body of the document and a
set of links with anchor text to other documents.

Up to you to decide:

1. What information should you collect?

2. How will you deal with malformed content?

3. How should the information you collect be
represented as an object?

44

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

45

URLs
Basic format protocol:path

Common protocols http:
https:
ftp:
mailto:
file:

The path may be relative to the directory of the referring page or
it may start at a root of the website.

http: and https: are the protocols for reading web pages.

We will do this by opening sockets to these URLs in C++ but for
now, you can use tools like curl to experiment.

46

HTTP and HTTPS

These are protocols for exchanging content between a
server and a browser.

It’s a human-readable format of requests and
responses.

The difference between HTTP and HTTPS is whether it’s
conducted over a secure socket layer (SSL) with
encryption.

47

HTTP and HTTPS

It’s a simple handshake for exchanging data.

1. Browser sends GET or other method + a path and a
protocol.

2. Server returns an OK + the requested content.

3. Any number of additional headers in any order.

4. Every line terminated with \r\n.

5. End of the header marked by a blank line, followed
by the content.

48

49

GET / HTTP/1.1
Host: www.nytimes.com
User-Agent: LinuxGetSsl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 200 OK
Connection: close
Content-Length: 1150280
Server: nginx
Content-Type: text/html; charset=utf-8
x-nyt-data-last-modified: Mon, 01 Feb 2021 15:59:19 GMT
Last-Modified: Mon, 01 Feb 2021 15:59:19 GMT
:

<!DOCTYPE html>
<html lang="en-US"
xmlns:og="http://opengraphprotocol.org/schema/">
:

Browser requests
a page with a
GET.

Server responds
with an HTTP 200
OK message, a
bunch of optional
HTTP headers, a
blank line and
then the content.

50

tcsh-29% sudo ./LinuxTinyServer 5000 '/mnt/c/Users/hamil/Google Drive/UMich
Faculty Page/'
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:54588

Connection accepted from 127.0.0.1:54589

GET /index.htm HTTP/1.1
Host: localhost:5000
Connection: keep-alive
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*
;q=0.8,application/signed-exchange;v=b3
Sec-Fetch-Site: none
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

As seen with the server you’ll build, the browser requests a page.

51

tcsh-29% sudo ./LinuxTinyServer 5000 '/mnt/c/Users/hamil/Google Drive/UMich
Faculty Page/'
Listening on 0.0.0.0:5000

Connection accepted from 127.0.0.1:54588

Connection accepted from 127.0.0.1:54589

GET /index.htm HTTP/1.1
Host: localhost:5000
Connection: keep-alive
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*
;q=0.8,application/signed-exchange;v=b3
Sec-Fetch-Site: none
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

This happens to be a request from a Chrome browser. Notice the user agent.

52

Connection accepted from 127.0.0.1:54659

GET /index.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

In your own requests, identify yourself for complaints. Here’s an example:

53

HTTP/1.1 200 OK
Content-Length: 8964
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Nicole Hamilton</title>

<link href="Styles/Hamilton.css" rel="stylesheet" type="text/css" />
:
:

The server maps the requested /index.htm to the actual file and responds.

54

tcsh-2% ./LinuxGetUrl http://localhost:5000/zork.htm
Service = http, Host = localhost, Port = 5000, Path = zork.htm
Host address length = 16 bytes
Family = 2, port = 5000, address = 127.0.0.1
GET /zork.htm HTTP/1.1
Host: localhost
User-Agent: LinuxGetUrl/2.0 nham@umich.edu (Linux)
Accept: */*
Accept-Encoding: identity
Connection: close

HTTP/1.1 404 Not Found
Content-Length: 0
Connection: close

tcsh-3%

Errors are reported as 400 and other codes. (You’ll build your own LinuxGetUrl.)

Agenda

1. Course details.

2. HTML.

3. Unicode and Utf8.

4. HTTP.

5. Redirects.

55

56

tcsh-8% ./LinuxGetUrl http://en.wikipedia.org
:
GET / HTTP/1.1
:

HTTP/1.1 301 TLS Redirect
Date: Thu, 12 Sep 2019 17:17:56 GMT
Server: Varnish
X-Varnish: 316194658
X-Cache: cp1087 int
X-Cache-Status: int-front
Server-Timing: cache;desc="int-front"
Set-Cookie: WMF-Last-Access=12-Sep-2019;Path=/;HttpOnly;secure;Expires=Mon, 14
Oct 2019 12:00:00 GMT
Set-Cookie: WMF-Last-Access-Global=12-Sep-
2019;Path=/;Domain=.wikipedia.org;HttpOnly;secure;Expires=Mon, 14 Oct 2019
12:00:00 GMThttps://en.wikipedia.org/
X-Client-IP: 68.51.181.4
Location: https://en.wikipedia.org/
Content-Length: 0
Connection: close

tcsh-9%

Often, you’ll encounter redirects, e.g., from HTTP to HTTPS.

57

tcsh-10% ./LinuxGetSsl https://en.wikipedia.org/
:
HTTP/1.1 301 Moved Permanently
Date: Thu, 12 Sep 2019 17:23:22 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 0
Connection: close
Server: mw1268.eqiad.wmnet
X-Powered-By: HHVM/3.18.6-dev
P3P: CP="See https://en.wikipedia.org/wiki/Special:CentralAutoLogin/P3P for
more info."
Cache-control: s-maxage=1200, must-revalidate, max-age=0
X-Content-Type-Options: nosniff
Location: https://en.wikipedia.org/wiki/Main_Page
Last-Modified: Thu, 12 Sep 2019 17:14:50 GMT
:

tcsh-11%

One redirect may lead to another. (You’ll build your own LinuxGetSsl as well.)

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 4: HTML, Utf8, HTTP and redirects
	Agenda
	Agenda
	details
	Agenda
	The basic parts to a Search Engine
	The basic parts to a Search Engine
	The basic parts to a Search Engine
	Recurring problem
	Recurring problem
	The webpage problem
	The World Wide Web is born
	XML
	XML
	XML
	HTML
	HTML
	HTML
	CSS
	HTML
	HTML
	HTML
	HTML
	HTML
	Agenda
	Slide Number 26
	Codesets
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Unicode
	History of Unicode
	UTF-8
	UTF-8
	UTF-8 sequences
	Utf8 FAQ
	Utf8 test case
	Not a homework
	Slide Number 39
	Byte Order Marks
	Slide Number 41
	Slide Number 42
	Slide Number 43
	HTML Parser
	Agenda
	URLs
	HTTP and HTTPS
	HTTP and HTTPS
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Agenda
	Slide Number 56
	Slide Number 57

